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KINEMATIC ANALYSIS OF MECHANISMS

We shall consider planar mechanisms only.

I hi h h ll h k h di iIn this chapter we shall assume that we know the dimensions 
of all the links. If the mechanism has F degrees of 
freedom, we shall assume that we know the value of F 

b f tnumber of parameters.

Our aim is:

1 Determine the position of all the links in the1. Determine the position of all the links in the 
mechanism

2. Determine the paths of points on these links

3. To determine velocity and acceleration characteristics 
of all the links or points on these links.
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Position: Location of a rigid body (link) or a particle (point) in a g y ( ) p (p )
rigid body with respect to a given reference frame.

Path: Locus of successive positions of a particle (point) on a 
rigid body (link).

Displacement: Change in position of a rigid body (link) or a 
( ) f fparticle (point) with respect to a reference frame. It is a vector 

quantity whose magnitude is called distance (measured in mm 
or m).

Velocity: The rate of change of position of a particle or a rigid 
body. It is the time rate of change of displacement. It is a vector 
quantity whose magnitude is called speed (mm/sec = mms-1 orquantity whose magnitude is called speed (mm/sec = mms 1 or 
m/sec = ms-1).

Acceleration: Time rate of change of velocity It is a vectorAcceleration: Time rate of change of velocity. It is a vector 
quantity whose magnitude is measured in mm/sec2 = mms-2 or 
m/sec2 = ms-2.
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Kinematics of a Particle

r x y= +( )2 2
x=rcosθ y=rsinθ

;

y( )

θ = −tan ( )1 y
x

x=rcosθ y=rsinθ

x

θ∠r=rr ix jy= +
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Complex Numbers

Real Numbers: are used to represent the magnitude of a quantity

When a real number is 
operated by (-1) 
operator, that number 

0
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(-1) operator.
is rotated by 1800



(i) operator: when this operator operates on a real number, that 
number is to be rotated by 900 CCWnumber is to be rotated by 900  CCW.

ib is the “imaginary number”, shows 
0the real number b rotated 900 CCW.

a+ib is the “complex number”. It 
shows the location of a point P inshows the location of a point P in 
the complex plane (Cauchy plane 
or Gauss-Argand Diagram)

r is the modulus, θ is the argument

İf we operate on a real number by i 
twice: (i*i)b, the real number must 

of the complex number.

22 bar +=
( ) ,

rotate twice by 900=1800.  Since 1800 
rotation is defined by (-1) operator:

i*i = i2 = -1

)/(tan 1 ab−=θ
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1. Two Complex numbers can be equal only if their real and imaginary parts are equal.

2 Complex numbers add vectorially (Paralelogram Law of addition)2. Complex numbers add vectorially (Paralelogram Law of addition)

The sum of two complex numbers is determined by adding real and imaginary parts 
separately. If c1= a1+ib1 and c2= a2+ib2 then p y 1 1 1 2 2 2

z=c1+c2= (a1+a2)+i(b1+b2)

3 Multiplication and division follows the rules of ordinary algebra with the additional relation i2= 1
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3. Multiplication and division follows the rules of ordinary algebra with the additional relation i2=-1.



c=a+ib : ortogonal representation

c=r(cosθ+isinθ)

Euler’s equation: eiθ = cosθ +i sinθ, 

c =r eiθ : Exponential form u= eiθ a unit vector making an angle θp
wr to real axis

Multiplication of a complex number 
by a constant, k

Multiplication of a complex 
number by eiφ.y y
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Conjugate of a complex number:

c=a+ib c= reiθc a+ib

c=a - ib

c= reiθ

c= re-iθ

r2 = cc = (a+ib) (a-ib) = a2 +b2

Real part of c =Re [c] = ½[(a+ib) +(a-ib)] = ½(c + c)Real part of c Re [c]  ½[(a+ib) +(a ib)]  ½(c + c)

Imaginary part of c = Im [c] = ½[(a+ib)- (a-ib) = ½[((c - c)
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Differentiation of complex numbers also follows the rules of ordinary calculus.



( )
z r ir= +cos sinθ θ e ii± = ±θ θ θcos sin( )z r i= +cos sinθ θ

e i±θ θcos sin

z reiθz re=
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Kinematics of Rigid Body in Plane
The assumption of rigidity results with the following three important conclusions:The assumption of rigidity results with the following three important conclusions:

1. The plane motion of a rigid body is completely described by the motion of any two points within the rigid 
body or by a point and the angle a line on the rigid plane makes wr to a reference

2 Ri idit th t th ti l l i t i ht li h l l it t i th di ti f thi2. Rigidity ensures that the particles lying on a straight line have equal velocity components in the direction of this 
line, since the distance between any two points along this line remains constant.

3. We are concerned with the kinematics of the rigid bodies only. It is sufficient to consider just a line on the rigid 
bod ( ector AB for e ample) Since the act al bo ndaries of the bod does not infl ence the kinematics the
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body (vector AB, for example). Since the actual boundaries of the body does not influence the kinematics, the 
rigid body in plane motion is to be regarded as a large plane which embraces any desired point in the plane.



Coincident Points
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Vector Loops of a Mechanism Fundemental 
Joint

A0B0=a1, AA0=a2, AB=a3,, B0B=a4

θ12,θ13, θ14 are the position variables.
A0A +AB=A0B  (for open kinematic chain 1,2,3)
A B +B B= A B (for open kinematic chain 1 4)A0B0 +B0B= A0B (for open kinematic chain 1,4)

A0A +AB=A0B0 +B0B loop closure equation (vector loop equation)

a i a j a i a j a i a i a j2 12 2 12 3 13 3 13 1 4 14 4 14cos sin cos sin cos sinθ θ θ θ θ θ+ + + = + +
Loop closure 

ti ia i a j a i a j a i a i a j2 12 2 12 3 13 3 13 1 4 14 4 14cos sin cos sin cos sinθ θ θ θ θ θ+ + + + + equation in 
cartesian forma a a a2 12 3 13 1 4 14cos cos cosθ θ θ+ = +

144133122 sinasinasina θ=θ+θ
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a e a e a a ei i i
2 3 1 4

12 13 14θ θ θ+ = + Loop Closure equation in complex numbers



AA0=a2, AB=a30 2 3

θ12,θ13, s14 are the position variables.

A0A +AB=A0B  (for open kinematic chain 1,2,3)0 0 ( p , , )

A0B (for open kinematic chain 1,4)

A A AB A B0 0+ = loop closure equation (vector loop equation)A A AB A B0 0+ loop closure equation (vector loop equation)

a e a e s ici i
2 3 14

12 13θ θ+ = + Loop Closure equation in complex numbers
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AA0=a2, AB=a3

13

'
13θ θ π= −

BABAAA BABAAA += 00

i iθ θ /

loop closure equation (vector loop equation)

a e s ic a ei i
2 14 3

12 13θ θ= + +
/

Loop Closure equation in complex numbers
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Inverted Slider Crank Mechanism

AA0=a2, B0C=a4, A0B0=a1

AoA = AoBo + BoC + CA

)(i
43

i
41

i
2

4141412 eseaaea α+θθθ ++=
05
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Two loops!

A0D0=a1, A0A=a2, AC=a3, AB=b3, CB=c3, EC=a4, D0E=a5, D0D=b5, ED=c5, BD=a6

A0A +AC=A0D0+D0E +EC a e a e a a e a ei i i i
2 3 1 5 4

12 13 15 14θ θ θ θ+ = + +

A0A +AB=A0D0+ D0D +DB a e b e a b e a ei i i i
2 3 1 5 6

12 13 3 15 5 16θ θ α θ α θ+ = + ++ +( ) ( )
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A third Loop equation

EC +CB=ED+DBEC +CB=ED+DB

a e c e c e a ei i i i
4 3 5 6

14 13 3 15 5 16θ θ β θ β θ+ = ++ +( ) ( )

A0A +AC=A0D0+D0E +EC
Add AoA + AC + EC + CB =DoE+ EC + ED +DB

AC+CB = AB
Similarly

These are not 
loop closure 
Eqns.

EC +CB=ED+DB

D0E+ED = D0D

There are only 2 independent
18
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A0A +AB=A0D0+ D0D +DBThere are only 2 independent 
loops



Door Mechanism for a Dishwasher
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c1

A0A=a2,; A0G=b2 ; GF=a3; BA=a6 ;  
B0B=a5 B0C=b5 ; B0E=c5 ; EF=a5 ; 

D

V t L E ti

0 5 0 5 ; 0 5 ; 5 ;
CD=a5 ; <BB0C=α5; <BB0E=β5

7

8

E
θ1

s1
8

θ1
4

Vector LoopEquations:

A0A+AB=A0B0+B0B
A G+GF=A B +B E+EF

4
5

F
CB

B
0

θ17

θ1
5

A0G+GF=A0B0+B0E+EF
B0C+CD=B0D

3

6 A

B

A 0

b1

θ12θ16

θ

Loop Closure equations in complex numbers2

3

G

A 0

a1
α2

θ13

16 1512

13 15 512 2 14

2 6 1 1 5

( )( )
2 3 1 1 5 4

i ii

i ii i

a e a e a ib a e

b e a e a ib c e a e

θ θθ

θ θ βθ α θ++

+ = − + +

+ = − + + +
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2 3 1 1 5 4

( )
5 7 1 18

i ib e a e c isθ α θ+ + = +
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A0A +AB = A0B

These are
AoA + AC = AoC

These are

not loop equations

AC+CB = AB
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1 Only one variable angle must be used to define the angular
Hints

1. Only one variable angle must be used to define the angular 
orientation of a link.

2 Use a b c for the fixed link lengths and α β γ for the fixed2. Use aj, bj, cj for the fixed link lengths and αj, βj,γj for the fixed 
angles θ1j for the variable link angles and sjk for the variable 
lengths.g

3. Beware of special positions at which the mechanism is drawn.
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Euler’s Equation of Polyhedra

j = the number of joints in the open kinematic chain + the number of joints removed.

j (l 1) + Lj = (l-1) + L or

L = j - l + 1 (Euler’s Equation of polyhedra)
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Graphical Solution:

If you are given 4 links youIf you are given 4 links, you 
can combine them in 8 
different ways 

Given one form of assembly 
determine the position of the links 
when the independent parameter 
changes its value from θ12 to θ12’

A0A+AB = A0B0+B0B

A A’+AB’ = A B +B B’
24
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A0A +AB = A0B0+B0B



A0B0+ A0A’ =B0A’ Both 
tA0B0+ A0A B0A vectors are 

known

Solve the vector equation

B0A’+ A’B’ =B0B’

q

The magnitudes of 
the three vectors 
are known

What about B”???
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Grashof’s Rule
1.The link may have a full rotation about 

the fixed axis (crank)
2 The link may oscillate (swing)2. The link may oscillate (swing) 

between two limiting angles (rocker).

3 possibilities for a four bar mechanism:
i) Both of the links connected to the fixed link can have a full rotation. This type of 

four-bar is called "double-crank " or "drag-link. “

3 possibilities for a four-bar mechanism:

g

j) Both of the links connected to the fixed link can only oscillate. This type of four-bar 
is called “double-rocker.“

k) One of the links connected to the fixed link oscillates while the other has a full 
rotation. This type of four-bar is called "crank-rocker".
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l= length of the longest link
s= length of the shortest link
p,q = length of the two intermediate links

l=830, s=216 , p=485 , q=581 

830 + 216 = 1046 < 485+581 = 1066 

IF l + s < p + q 
) b) T diff t k k h i ibl I h tha),b) Two different crank-rocker mechanisms are possible. In each case the 

shortest link is the crank, the fixed link is either of the adjacent links.

c) One double-crank (drag-link) is possible when the shortest link is the ) ( g ) p
frame.

d) One double-rocker mechanism is possible when the link opposite the 
shortest link is the frame

27
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shortest link is the frame.



l + s < p + qp q

Drag-Link Double Rocker

Crank-Rocker
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Crank Rocker



l + s > p + q
Only double-rocker mechanisms are possible (four different 

mechanisms, depending on the fixed link).
l 829 216 485 415l=829, s=216 , p=485 , q=415 

829 + 216 = 1045 > 485+415 = 900

Grashof’s rule does not depend on how 
the links with different size are 
connected to each other.
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l + s = p + q Same as l + s < p + q but “Change point” exists. 
A position of the mechanism where all the joints 
are colinear (lie on a straight line)
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Paralelogram Linkage Deltoid Linkage
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Dead-Center Positions of  Crank-Rocker Mechanisms

ψ= swing angle

φ= corresponding crank rotationφ  corresponding crank rotation

β= initial crank angle

Determine ψ and φ using 
cosine theorem.

time it takes for forward stroke φTR time it ta
= =

−
kes for forward stroke

time it takes for reverse stroke
φ

φ3600
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Transmission Angle

Transmission angle is a 
kinematic quantity which 

i id hgives us an idea on how 
well the force is 
transmitted

+ − −a a a a a a2 2 2 2

cos cosμ θ=
+ − −

+
a a a a

a a
a a
a a

4 3 1 2

3 4

1 2

3 4
122

cos min
max

μ =
+ − −

±
a a a a

a a
a a
a a

4
2

3
2

1
2

2
2

3 4

1 2

3 42
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Examples: 

Slider Crank Mechanism Inverted Slider Crank MechanismSlider-Crank Mechanism Inverted Slider-Crank Mechanism

For the full rotatability ofFor the full rotatability of 
the crank:

Eccentricity < (a3-a2)  and 
a3 > a2
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Function routines to determine the magnitude 
and the angle of a vector (rectangular to polar 

i )
Function Mag(X, Y)
‘ returns the magnitude of the vector
Mag = Sqr(X ^ 2 + Y ^ 2)

conversion)

Mag = Sqr(X  2 + Y  2)
End Function

Function Ang(X, Y)
‘ returns the angle the vector makes wr to +ve x axis
Dim AA, Pi
Pi=4*Atn(1)

If Abs(X) > eps Thenbs( ) eps e
AA = Atn(Y / X)
If X < 0 Then

AA = AA + Pi
ElElse:
If Y < 0 Then AA = AA + 2*Pi

End If
Else:
If Y > 0 Then AA = Pi/2  Else AA = -Pi / 2

End If
Ang = AA

E d F ti
38
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End Function



CB

O p p o s i te

U 1

Function routines to solve an unknown angle 
or length of a triangle using cosine theorem

A
α

U 1

U 2 Function AngCos(u1, u2, Opposite)
‘returns the angle alfa

Dim UA U
U = (u1 * u1 + u2 * u2 - Opposite * Opposite) / (2 * u1 * u2)
AA = Acos(U)
AngCos = AA

E d F tiEnd Function

Function MagCos(u1, u2, Angle)
‘ returns the length of the side opposite to the side

2

1

g pp
MagCos = Sqr(u1 * u1 + u2 * u2 - 2 * u1 * u2 * Cos(Angle))
End Function

F ti A (X)

θ
1- x2

x

1

Function Acos(X)
Acos = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)

End Function
1

x

θ

Function Asin(X)
Asin = Atn(X / Sqr(-X * X + 1))
End Function
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Stepwise Solution
Write a set of equations which can be solved in steps to yield a 
complete anal sis of the mechanismcomplete analysis of the mechanism

Or

Derive an algorithm to perform a complete position analysisg p p p y
Example: Four-bar B0A=sx+isy =s<φ

sx= a2cos(θ12)-a1

sy=a2sin(θ12)
(1)
(2)

2 2

1tan ( )
x ys s s

a s sφ −

= +

=

(3)

(4)tan ( , )x ya s sφ

( )[ ]1 2 2 2

( )[ ]ψ = + −−cos /1
4
2 2

3
2

42a s a a s

( )

(5)

( )[ ]μ = ± + −−cos /1
3
2

4
2 2

3 42a a s a a

θ14=φ±ψ (6)(7)
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θ13=θ14−μ (8)



Given:

Th li k l thThe link lengths a1, a2, a3, a4,

the configuration (config)

Th i t k l θThe input crank angle θ12

Determine: The position of 
the links

Solve equations 1-8
the links

Config= +1 or 1(cross configuration)

Function FourBar(Crank, Coupler, Rocker, Fixed, Config, Theta)

Config= +1 or -1(cross configuration)

( p g )
Dim S, Fi, Si As Double
Dim sx, sy As Double
sx= -Fixed + Crank * Cos(Theta)
sy = Crank * Sin(Theta)

This function 
ti t th sy = Crank * Sin(Theta)

S = Mag(sx, sy)
Fi = Ang(sx, sy)
Si = AngCos(Rocker, S, Coupler)

routine returns the 
value of θ14
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FourBar = Fi - Config * Si
End Function



Function FourBrCoupler(Crank, Coupler, Rocker, Fixed, Config, Theta)
Dim S, Fi, Si, Mu As Double
Dim sx, sy, Theta4 As Double
sx = -Fixed + Crank * Cos(Theta)
sy = Crank * Sin(Theta)
S = Mag(sx, sy)
Fi = Ang(sx sy)

This function 
routine 
returns the Fi = Ang(sx, sy)

Si = AngCos(Rocker, S, Coupler)
Theta4= Fi - Config * Si
Mu = AngCos(Coupler, Rocker, S)

returns the 
value of θ13
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FourBrCoupler = Theta4 - Mu
End Function



Function FourBar2(Crank, Coupler, Rocker, Fixed, Config, Theta)
Dim s, Fi, Si As Double
Di A D blDim sx, sy As Double
Dim A(2)
sx = -Fixed + Crank * Cos(Theta)
sy = Crank * Sin(Theta)This function sy C a S ( eta)
s = Mag(sx, sy)
Fi = Ang(sx, sy)
Si = AngCos(Rocker, S, Coupler)
M A C (C l R k )

This function 
routine returns 
both values θ13
and θ14

Mu = AngCos(Coupler, Rocker, s)
A(1) = Fi - Config * Si
A(0) = A(1) - Mu
FourBar2 = A
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Example: Slider-Crank Mechanism

1 2 12 1sinsin a aθφ − ⎡ ⎤−
= ⎢ ⎥

⎣ ⎦3a⎢ ⎥
⎣ ⎦

If Config= +1 then θ13=π−φ
If C fi 1 th θ φIf Config= -1 then  θ13=φ
s14=a2cosθ12-a3cos θ13
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Example: Slider-Crank mechanism

Function SliderCrank(Crank, Coupler, Eccentricity, Config, Theta)
Dim Fi As Double
Fi = Asin((Crank * Sin(Theta) - Eccentricity) / Coupler)
If Config = 1 Then Fi = 4 * Atn(1) - FiIf Config = 1 Then Fi = 4  Atn(1) - Fi
SliderCrank = Crank * Cos(Theta) - Coupler * Cos(Fi)
End Function
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Function with double argument

Function FourBar2(Crank, Coupler, Rocker, Fixed, Config, Theta)
Dim s, Fi, Si As Double
Dim sx, sy As Double
Dim A(2)
sx = -Fixed + Crank * Cos(Theta)
sy = Crank * Sin(Theta)This function sy  Crank  Sin(Theta)
s = Mag(sx, sy)
Fi = Ang(sx, sy)
Si = AngCos(Rocker, S, Coupler)

C (C )

This function 
routine returns 
both values θ13
and θ14

Mu = AngCos(Coupler, Rocker, s)
A(1) = Fi - Config * Si
A(0) = A(1) - Mu
FourBar2 = A
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FourBar2  A
End Function



Function SliderCrank2(Crank, Coupler, Eccentricity, Config, Theta)
Dim Fi As Double
Dim A(2) As Double
Fi = Asin((Crank * Sin(Theta) - Eccentricity) / Coupler)
If Config = 1 Then Fi = 4 * Atn(1) - Fi
A(0) = Fi
A(1) = Crank * Cos(Theta) - Coupler * Cos(Fi)A(1) = Crank  Cos(Theta) - Coupler  Cos(Fi)
SliderCrnk2 = A
End Function
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