

GEAR TRAINS

Worm and Gear

Very high gear ratio is possible in small package. Allow one directional drive: worm \rightarrow worm wheel

Herringbone Gears

Simple Gear Trains

In general:

ERES

 \bigcirc

 $R_{24} = R_{23}R_{34} = \left(-\frac{T_2}{T_2}\right)\left(-\frac{T_3}{T_4}\right) = \frac{T_2}{T_4}$

Gear 3 is "idler". Used to change the direction of rotation or to connect two shafts at a distance.

Simple "Compound" Gear Train

$$\mathbf{R}_{26} = \frac{\mathbf{n}_{16}\mathbf{n}_{15}\mathbf{n}_{14}\mathbf{n}_{13}}{\mathbf{n}_{15}\mathbf{n}_{14}\mathbf{n}_{13}\mathbf{n}_{12}} = \mathbf{R}_{23}\mathbf{R}_{34}\mathbf{R}_{45}\mathbf{R}_{56} = (-1)^4 \frac{\mathbf{T}_2\mathbf{T}_3\mathbf{T}_4'\mathbf{T}_5'}{\mathbf{T}_3\mathbf{T}_4\mathbf{T}_5\mathbf{T}_6}$$

6

 $R_{ij} = \frac{n_{1j}}{n_{1i}} = (-1)^{k} \frac{\text{Product of driving gear tooth numbers}}{\text{Product of driven gear tooth numbers}}$

k = number of external gear meshes.

Automotive Transmission

http://auto.howstuffworks.com/transmission.htm

Low gear: Gear 3 meshes with gear 6, power flows 1-4-6-3

$$\frac{\omega_{out}}{\omega_{in}} = \frac{14}{31} \cdot \frac{18}{27} = 0.301$$

Second Gear: gear 2 meshes with gear 5, power flows 1-4-5-2

$$\frac{\omega_{out}}{\omega_{in}} = \frac{14}{31} \cdot \frac{25}{20} = 0.564$$

High Gear: gear 2 is shifted so that the clutch teeth on the end of gear 2 mesh with the clutch on gear 1 (direct

=1

9

$$\omega_{out}$$

 ω_{in}

 $\widehat{}$

drive)

Reverse gear: gear 3 is shifted to mesh with gear 8, power flows 1-4-7-8-3.

$$\frac{\omega_{out}}{\omega_{in}} = -\frac{14}{31} \cdot \frac{14}{27} = 0.234$$

Dual Clutch Transmission

© ERES

The axis of one of the gear (planet) is not fixed

Planetary Gear Trains

2-3 and 2-4 are simple gear trains

$$n_{14} = -\frac{36}{24} \quad n_{12} \quad n_{14} = -\frac{3}{2} \quad n_{12}$$

$$n_{13} = -\frac{40}{20} \quad n_{12} \quad n_{13} = -2 \quad n_{12}$$
Now consider links 3,4,5,6 and 7.
Link 5 is the planet, link 3 is the arm

$$\frac{n_{17}-n_{13}}{n_{14}-n_{13}} = -\frac{30^*30^*20}{90^*20^*70} = -\frac{1}{7}$$

$$n_{17} = \frac{8}{7} \quad n_{13} \quad -\frac{1}{7} \quad n_{14}$$

$$n_{17} = -\frac{8^*2}{7} \quad n_{12} \quad -\frac{3}{7^*2} \quad n_{12}$$

$$m_{12} = -207.14 \text{ rpm}$$

$$R = 501 \text{ METU ME}$$

n ₁₂ = 2000 rpm	9 <u>1</u> T 9 <u>2</u> T	<u>91</u> T 92T
n ₁₆ =?	Planet -3	5 Planet
First planet (arm red- link2)		
n ₁₄ -n ₁₂ 90*92		
n ₁₁ -n ₁₂ 91*91	Arm //// /2	д ,6 Arm
Since n ₁₁ =0 :		
$n_{14} = n_{12} - \frac{90*92}{21121}$		
91*91 n ₁₂	Second planet (ar	m blue- link4)
$n_{14} = \frac{8281 - 8280}{8284} n_{12}$	$n_{16} - n_{14} = 90*92$	
0201	n ₁₁ -n ₁₄ 91*91	91*91 n ₁
n ₁₄ =n ₁₂ 8281	$n_{16} = \frac{8281 - 8280}{8281} n_{14}$	n ₁₆ = <u>1</u> n ₁₄ 8281
$n_{16} = \frac{1}{8281^2} n_{12} n_{10}$	$n_{12} = \frac{1}{68,574,961} n_{12}$	n ₁₆ = 0.0000292 rpm
		19

Example: Model T Ford gearbox

ME 301 METU ME

Gearbox : Integral with the engine. Foot operated 2 speed and reverse epicyclic transmission foot-brake, 1908 for 19 yrs 9 million were made! http://www.t-ford.co.uk/car.htm

20

Low gear for the model T Ford 33 27 $\frac{n_{out} - n_{in}}{n_{s1} - n_{in}} = \frac{21 \times 27}{33 \times 27} = 7/11$ P_1 P_2 \mathbf{P}_1 \mathbf{v}_{ω_1} В ω_{in} n_{out} =(1-7/11) n_{in} =4/11 n_{in} =0.3636 n_{in} ♥_{@out} O' 0 S. 0' S_2 ω_{out} Fixed Reverse gear for the model T Ford 27 24 n_{out}-n_{in} $\frac{n}{100} = \frac{30*27}{24*27}$ P_2 P_1 __ = 5/4 n_{s1}-n_{in} C - · - · - \mathbf{v}_{ω_1} Ĉ $n_{out} = (1-5/4) n_{in} = -1/4 n_{in} = -0.25 n_{in}$ 0 ω_{out} · 🚝 0' **o** S_1 S_2 27 21 Fixed

Simple compound gear train (axes of all gears are fixed axes) $R_{23} = \frac{20}{80} = \frac{\omega_{13}}{\omega_{12}}$ and

or $R_{34} = \frac{18}{60} = \frac{\omega_{14}}{\omega_{13}}$

© ERES

 $R_{24} = \frac{\omega_{14}}{\omega_{12}} = \frac{20*18}{80*60} = \frac{3}{40} = \frac{\text{Product of driving gear tooth number}}{\text{Product of driven gear tooth number}}$

 $R_{24} = \frac{\omega_{14}}{\omega_{12}} = +\frac{3}{40} = +0.075$

