Introduction to Gear Trains

Most of the pictures and animations are from Norton, "Design of Machinery" McGrawHill, 2004

Herringbone Gears

Worm and Gear

Very high gear ratio is possible in small package. Allow one directional drive: worm \rightarrow worm wheel

Created for "Design of Machinery, 3rd ed." by R.L.L. Norton and
"The Multimedia Handbook of Mechanical Devices" by S. Wan "The Multimedia Handbook of Mechanical Devices" by S. Wang All rights reserved.

$$
R_{23}=\frac{\omega_{13}}{\omega_{12}}=\frac{n_{13}}{n_{12}}=+\frac{r_{2}}{r_{3}}=+\frac{d_{2}}{d_{3}}
$$

Two gears can only mesh if they have the same "circular pitch", "diametral pitch" or "module"

Circular pitch, $c_{p}: 2 \pi r=c_{p} T \quad$ ($T=$ no of tooth on the circumference)
$\mathrm{C}_{\mathrm{p}}=$ the distance between a point on one gear tooth and the same point on the next gear tooth (c_{p} is measured in inches).
Diametral Pitch $P_{D}=T / D$
Module, $\mathrm{m}: \pi \mathrm{D}=\mathrm{m} \mathrm{T}$ (m is measured in $m m$)
Hence: $\quad R_{23}=\frac{\omega_{13}}{\omega_{12}}=\frac{n_{13}}{n_{12}}= \pm \frac{r_{2}}{r_{3}}= \pm \frac{d_{2}}{d_{3}}= \pm \frac{T_{2}}{T_{3}}$

The + sign is used here to take into account the direction of rotation.

Simple Gear Trains

In general:

$$
\begin{gathered}
\mathrm{R}_{\mathrm{ij}}=\frac{\mathrm{n}_{1 \mathrm{j}}}{\mathrm{n}_{1 \mathrm{i}}}=(-1)^{\mathrm{k}} \frac{\text { Product of driving gear tooth numbers }}{\text { Product of driven gear tooth numbers }} \\
k=\text { number of external gear meshes. }
\end{gathered}
$$

Reverted Gear

Used in automotive
transmission:

- compact, save space

Revert = go back to a previous state

Speed change gear box
$0-4-5-6-10-12$

$$
\frac{\omega_{\text {output }}}{\omega_{\text {input }}}=(-1)^{2} \frac{22 \bullet 23}{34 \bullet 46}=\frac{11}{34}=0.323
$$

Important: Gears are numbered. Not the links!!

Automotive Transmission

http://auto.howstuffworks.com/transmission.htm

Low gear: Gear 3 meshes with gear 6 , power flows 1-4-6-3

$$
\frac{\omega_{\text {out }}}{\omega_{\text {in }}}=\frac{14}{31} \bullet \frac{18}{27}=0.301
$$

Second Gear: gear 2 meshes with gear 5, power flows 1-4-5-2

$$
\frac{\omega_{\text {out }}}{\omega_{\text {in }}}=\frac{14}{31} \cdot \frac{25}{20}=0.564
$$

High Gear: gear 2 is shifted so that the clutch teeth on the end of gear 2 mesh with the clutch on gear 1 (direct drive)

$$
\frac{\omega_{\text {out }}}{\omega_{\text {in }}}=1
$$

Reverse gear: gear 3 is shifted to mesh with gear 8 , power flows 1-4-7-8-3.

$$
\frac{\omega_{\text {out }}}{\omega_{\text {in }}}=-\frac{14}{31} \bullet \frac{14}{27}=0.234
$$

 "The Multimedia Handbook of Mechanical Devices" by S. Wang
Sofware copyright 2004 © by The McGraw-Hill Companies, Inc. All ights reserved.

Created for "Design of Machinery, 3rd ed." by R. L. Noton and Software copyright 2004 © by The McGraw-hill Companies, Inc. All rights reserved.

Dual Clutch Transmission

From: How stuffs work: http:/lauto.howstuffworks.com/dual-clutch-transmission1.htm

PLANETARY GEAR TRAINS

The axis of one of the gear
(planet) is not fixed

Planetary Gear Trains

$$
V_{P i}=V_{P j}=V_{A}+V_{P / A}
$$

$$
v_{P j}=v_{P i}=\omega_{1 j} r_{j}
$$

$$
v_{A}=\omega_{1 k}\left(r_{j} \mp r_{i}\right)
$$

$$
v_{P / A}= \pm \omega_{1 i} r_{i}
$$

(- if external, + if internal mesh)

$$
\omega_{1 j} r_{j}=\omega_{1 k}\left(r_{j} \mp r_{i}\right) \pm \omega_{1 i} r_{i}
$$

$$
\pm \frac{r_{i}}{r_{j}}= \pm \frac{d_{i}}{d_{j}}= \pm \frac{T_{i}}{T_{j}}=R_{i j} \quad \text { Gear Ratio }
$$

$$
\pm \frac{r_{i}}{r_{j}}=\frac{\omega_{1 j}-\omega_{1 k}}{\omega_{1 i}-\omega_{1 k}}
$$

Gear Ratio is not equal to the speed ratio

$$
\begin{aligned}
& R_{i j}=\frac{\omega_{k i}}{\omega_{k i}}=\frac{\omega_{1 j}-\omega_{1 \mathrm{k}}}{\omega_{1 i}-\omega_{1 k}} \\
& R_{p j}=\frac{\omega_{\mathrm{kj}}}{\omega_{\mathrm{kp}}}=\frac{\omega_{1 \mathrm{j}}-\omega_{1 \mathrm{k}}}{\omega_{1 \mathrm{p}}-\omega_{1 \mathrm{k}}} \quad \frac{1}{R_{\mathrm{pj}}}=R_{\mathrm{jp}} \\
& R_{\mathrm{ip}}=\frac{R_{i j}}{R_{\mathrm{pj}}}=\frac{\omega_{1 \mathrm{p}}-\omega_{1 \mathrm{k}}}{\omega_{1 i}-\omega_{1 \mathrm{k}}} \\
& R_{\mathrm{ip}}=R_{\mathrm{ij}} R_{\mathrm{jp}}=(-1)^{\mathrm{k}} \frac{T_{j} T_{i}}{T_{j}^{\prime} T_{p}}
\end{aligned}
$$

2-3 and 2-4 are simple gear trains

$$
n_{14}=-\frac{36}{24} n_{12} \quad n_{14}=-\frac{3}{2} n_{12}
$$

$$
n_{13}=-\frac{40}{20} n_{12} \quad n_{13}=-2 n_{12}
$$

Now consider links 3,4,5,6 and 7.
Link 5 is the planet, link 3 is the arm

$$
\frac{n_{17}-n_{13}}{n_{14}-n_{13}}=-\frac{30 * 30 * 20}{90 * 20 * 70}=-\frac{1}{7}
$$

$$
n_{17}=\frac{8}{7} n_{13}-\frac{1}{7} n_{14}
$$

$$
\mathrm{n}_{17}=-\frac{29}{14} \mathrm{n}_{12}
$$

$$
n_{17}=\frac{-8 \star 2}{7} n_{12}-\frac{-3}{7 * 2} n_{12}
$$

$$
\begin{aligned}
& \mathrm{n}_{12}=2000 \mathrm{rpm} \\
& \mathrm{n}_{16}=?
\end{aligned}
$$

First planet (arm red- link2)

$$
\frac{n_{14}-n_{12}}{n_{11}-n_{12}}=\frac{90^{*} 92}{91 * 91}
$$

Since $n_{11}=0$:

$$
\begin{aligned}
& \mathrm{n}_{14}=\mathrm{n}_{12}-\frac{90^{*} 92}{91^{*} 91} \mathrm{n}_{12} \\
& \mathrm{n}_{14}=\frac{8281-8280}{8281} \mathrm{n}_{12}
\end{aligned}
$$

$$
\mathrm{n}_{14}=\frac{1}{8281} \mathrm{n}_{12}
$$

Second planet (arm blue- link4)

$$
\begin{array}{ll}
\frac{\mathrm{n}_{16}-\mathrm{n}_{14}}{\mathrm{n}_{11}-\mathrm{n}_{14}}=\frac{90^{*} 92}{91 * 91} & \mathrm{n}_{16}=\mathrm{n}_{14}-\frac{90^{*} 92}{91 * 91} \mathrm{n}_{14} \\
\mathrm{n}_{16}=\frac{8281-8280}{8281} \mathrm{n}_{14} & \mathrm{n}_{16}=\frac{1}{8281} \mathrm{n}_{14}
\end{array}
$$

$\mathrm{n}_{16}=0.0000292 \mathrm{rpm}$

Example: Model T Ford gearbox

Gear	Clutch		Brake	Bands	Gear Ratio
		1	2	3	
Idle	disengaged	off	off	on or off	-
Low	disengaged	off	on	off	$?$
High	engaged	off	off	off	1
Reverse	disengaged	on	off	off	$?$

Low gear for the model T Ford

Reverse gear for the model T Ford

$$
\begin{aligned}
& \frac{n_{\text {out }}-n_{\text {in }}}{n_{\text {s1 }}-n_{\text {in }}}=\frac{30 * 27}{24 * 27}=5 / 4 \\
& n_{\text {out }}=(1-5 / 4) n_{\text {in }}=-1 / 4 n_{\text {in }}=-0.25 n_{\text {in }}
\end{aligned}
$$

GEAR TRAINS WITH BEVEL GEARS

Bevel gears

$$
\begin{aligned}
\frac{\omega_{13}}{\omega_{12}}= & \frac{r_{2}}{r_{3}}=\frac{T_{2}}{T_{3}}=\frac{\left(r_{2} / O P\right)}{\left(r_{3} / O P\right)} \\
& =\frac{\sin \alpha}{\sin \beta}=R_{23}
\end{aligned}
$$

Simple compound gear train (axes of all gears are fixed axes)

$$
\mathrm{R}_{23}=\frac{20}{80}=\frac{\omega_{13}}{\omega_{12}}
$$

and
or $\quad \mathrm{R}_{34}=\frac{18}{60}=\frac{\omega_{14}}{\omega_{13}}$
$\mathrm{R}_{24}=\frac{\omega_{14}}{\omega_{12}}=\frac{20 * 18}{80 * 60}=\frac{3}{40}=\frac{\text { Product of driving gear tooth number }}{\text { Product of driven gear tooth number }}$
$\mathrm{R}_{24}=\frac{\omega_{14}}{\omega_{12}}=+\frac{3}{40}=+0.075$

$+76 \mathrm{~T}$

Planetary Gear Train

$\mathrm{R}_{12}=\frac{\mathrm{n}_{12}-\mathrm{n}_{15}}{\mathrm{n}_{11}-\mathrm{n}_{15}}=-\frac{76 * 56}{56 * 20}=-\frac{19}{5}$
Since $n_{11}=0$: $\mathrm{n}_{15}=\frac{5}{24} \mathrm{n}_{12}$
$\mathrm{R}_{14}=\frac{\mathrm{n}_{14}-\mathrm{n}_{15}}{\mathrm{n}_{11}-\mathrm{n}_{15}}=+\frac{76 * 24}{56 * 35}=+\frac{228}{245}$
Since $\mathrm{n}_{11}=0$:

$$
\begin{aligned}
& \mathrm{n}_{14}=\left(1-\frac{228}{245}\right) \mathrm{n}_{15}=\frac{17}{245} \mathrm{n}_{15}=\frac{17}{245} * \frac{5}{24} \mathrm{n}_{12} \\
& \mathrm{~N}_{24}=\frac{\mathrm{n}_{14}}{\mathrm{n}_{12}}=0.0145
\end{aligned}
$$

Motion from 2 to 3 and 2 to 4 are simple gear trains (axes fixed):

$$
\begin{aligned}
& \mathrm{n}_{14}=\frac{50}{20} \mathrm{n}_{12} \\
& \mathrm{n}_{13}=\frac{50}{20} \mathrm{n}_{12}
\end{aligned}
$$

Links 3 and 4 rotate in different directions
$\mathrm{n}_{13}=-\mathrm{n}_{14}=2.5 \mathrm{n}_{12}$
Considering links $3,4,5$ and 6 ; link 6 is the planet and link 5 is the arm (output)
$\frac{\mathrm{n}_{13}-\mathrm{n}_{15}}{\mathrm{n}_{14}-\mathrm{n}_{15}}=+\frac{90 * 28}{30 * 92}$
$\mathrm{n}_{13}-\mathrm{n}_{15}=\underline{21}\left(\mathrm{n}_{14}-\mathrm{n}_{15}\right)$
$\frac{2}{23} n_{15}=n_{13}-\frac{21}{23} n_{14}$

OUTPUT

$$
\mathrm{n}_{15}=55 \mathrm{n}_{12}
$$

$\frac{2}{23} n_{15}=\frac{5}{2} \frac{44}{23} n_{12}$

