


KINEMATIC ANALYSIS OF MECHANISMS

We shall consider planar mechanisms only.

In this chapter we shall assume that we know the dimensions
of all the links. If the mechanism has F degrees of
freedom, we shall assume that we know the value of F
number of parameters.

Qur aim is;:

1. Determine the position of all the links in the
mechanism

2. Determine the paths of points on these links

3. To determine velocity and acceleration characteristics
of all the links or points on these links.
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Position: Location of a rigid body (link) or a particle (point) in a
rigid body with respect to a given reference frame.

Path: Locus of successive positions of a particle (point) on a
rigid body (link).

Displacement: Change in position of a rigid body (link) or a
particle (point) with respect to a reference frame. It is a vector
guantity whose magnitude is called distance (measured in mm
or m).

Velocity: The rate of change of position of a particle or a rigid

body. It is the time rate of change of displacement. It is a vector
guantity whose magnitude is called speed (mm/sec = mms* or
m/sec = ms).

Acceleration: Time rate of change of velocity. It is a vector
guantity whose magnitude is measured in mm/sec? = mms=2 or
m/sec? = ms=2.
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Kinematics of a Particle

X=rcoso y=rsind
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Complex Numbers

Re(®)

Real Numbers: are used to represent the magnitude of a quantity

Real Axis

When a real number is

i H operated by (-1)
-1)a c=ath operator, that number

is rotated by 1800

5

(-1) operator.
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(i) operator: when thi

IS O
mrtrmalaAar ia tA lhA rAtAtA A
Harripyel 1o tu ye iutatcu

} Imaginary Axis

R alalV.Y
y 90° CCW.

|

perator operates on a real number, that
| AN
)

ib is the “imaginary number”, shows
the real number b rotated 90° CCW.

a+ib is the “complex number”. It
shows the location of a point P in
the complex plane (Cauchy plane
or Gauss-Argand Diagram)

if we operate on a real number by i
twice: (i*i)b, the real number must
rotate twice by 90°=180°. Since 1800
rotation is defined by (-1) operator:

Real Axas

r is the modulus, 6 is the argument
of the complex number.

0 =tan"(b/a)
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1. Two Complex numbers can be equal only if their real and imaginary parts are equal.
2. Complex numbers add vectorially (Paralelogram Law of addition)
The sum of two complex numbers is determined by adding real and imaginary parts

separately. If c¢4=a;+ib; and c,= a,+ib, then
z=c+Cy= (a;+a,)+i(b; +0,)

ifh b 9 ‘Imaginm*;r’ Aoy
_ P
| |
ib,
ib, /
£
2 Fool Aar

.-l Y 3 -

3. Multiplication and division follows the rules of ordinary algebra with the additional relation i2=-1.

v
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c=a+ib : ortogonal representation

c=r(cos6+isino)

Euler’'s equation: e = cos0 +i sino,
c =r e® :Exponential form

Multiplication of a complex number
by a constant, k

u= €% a unit vector making an angle 0
wr to real axis

Multiplication of a complex
number by e,

i

P P
Imaginery Axis
d i
r
P
EmmEE i
Multiplication by &
Multiplication by a constant g
Roal Axis Real Axis
" Stretch” "Rotation"
operaion operati on

© ERES

ME 201 METU ME



Conjugate of a complex number:

c=a+ib c= rel

c=a-ib c= re-i

Beal Axig

r2 = cC = (a+ib) (a-ib) = a® +b?

Real part of ¢ =Re [c] = ¥2[(a+ib) +(a-ib)] = ¥2(c + )

Imaginary part of ¢ = Im [c] = ¥[(a+ib)- (a-ib) = ¥2[((c - T)

Differentiation of complex numbers also follows the rules of ordinary calculus.
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Z=1TrCcosSO+1Irsino

s \

Z = r(cose +isin 9)

Res)
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Kinematics of Rigid Body in Plane
The assumption of rigidity results with the following three important conclusions:

1. The plane motion of a rigid body is completely described by the motion of any two points within the rigid
body or by a point and the angle a line on the rigid plane makes wr to a reference

2. Rigidity ensures that the particles lying on a straight line have equal velocity components in the direction of this
line, since the distance between any two points along this line remains constant.

3. We are concerned with the kinematics of the rigid bodies only. It is sufficient to consider just a line on the rigid
body (vector AB, for example). Since the actual boundaries of the body does not influence the kinematics, the
rigid body in plane motion is to be regarded as a large plane which embraces any desired point in the plane.
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Coincident Points

02

12
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Vector Loops of a Mechanism Fundemental

/foint

A.Bo=a,, AA=a,, AB=a,, B,B=3,

0,,,0,5, 0,4, are the position variables.
A,A +AB=A,B (for open kinematic chain 1,2,3)

A,B, +B,B=A,B (for open kinematic chain 1,4)
A,A +AB=AB, +B,B loop closure equation (vector loop equation)

~ Loop closure
14 equation in
a, cosO,, +a,cos0,, =a, +a,cosH,, cartesian form

a,sinB,, +a,sinB, =a,sin0,,

a,cos0,,i +a,sind,j+a,cos0,i+a,sin0,,j=a,i +a,cosd,i+a,sind

i i0 L
a6 +a,6 ™ =a, +a,6™ | oop Closure equation in complex numpers
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0,,,013, S14 are the position variables.

A,A +AB=A,B (for open kinematic chain 1,2,3)
A.,B (for open kinematic chain 1,4)

n| IV'QI‘I
Op ciosure equ

AA+AB=AB o

a,e'” +a,e

- 314 + IC Loop Closure equation in complex numbers

14

© ERES ME 201 METU ME



AO A = AO B + BA loop closure equation (vector loop equation)

. 'e/
=S, +ic+a,e™ Loop Closure equation in complex numbers

15
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Inverted Slider Crank Mechanism

A

0

AA,=a,, B,C=a,, A;By=a,
AA=AB,+B,C+CA

i Ol G- DR M i bl

16
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Two loops!

AU

{
A,Dy=a,, A,A=a,, AC=a,, AB=b,, CB=c,, EC=a,, D,E=as, D,D=b,, ED=c., BD=a,

163 1614

A,A +AC=A,D,+D,E +EC a,e’ +ae =a, +a.e™ +a,e

AOA +AB=A0D0+ DOD +DB azeielz _I_ bsei(913+a3) — al + bsei(els"'as) "I“ aGeiele

17
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A third Loop equation

EC +CB=ED+DB

a4ei914 i Csei(913+[33) inm Csei(915+35) + a6ei916

AA +AC=A,D,+D,E +EC it AA+AC + ;@/J: CB :D0E+%; ED +DB

EC +CB=ED+DB 5 : AC+CB=AB 1 . are not
4 : Similarly :é)qolfsclosure
D,E+ED = D,D

There are only 2 independent

tifils A,A +AB=A,D,+ D,D +DB

18
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Door Mechanism for a Dishwasher

2

19

ME 201 METU ME

© ERES



AcA=a,; A,G=Db, ; GF=a;; BA=ay;
B,B=a; B,C=b; B,E=c;; EF=a; ;
CD=a; ; <BB,C=as; <BB,E=f;

(o]
Vector LoopEquations:
“ A,A+AB=A,B,+B,B
A,G+GF=A,B,+B,E+EF
= B,C+CD=B,D
'
‘\ 2 G Loop Closure equations in complex numbers
al
a,e” +ae'® =—a +ib +ae™

63 164

b,e'%*%) + ae% =—a +ib +ce'® " +a,e

be'® ) +a.e™ =c +is, 20
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A,A +AB = AB

AA+AC=AC

AC+CB =AB

These are

not loop equations

21
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1. Only one variable angle must be used to define the angular

vlv

2. Use a;, b;, ¢; for the fixed link lengths and o, B;,y; for the fixed
angles 611 for the variable link angles and sJk for the variable
lengths.

3. Beware of special positions at which the mechanism is drawn.

&

"_['Z"

(3

22
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Euler’s Equation of Polyhedra

j = the number of joints in the open kinematic chain + the number of joints removed.
j=(-1)+L or
L=j-l+1 (Euler’s Equation of polyhedra)

23
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Graphical Solution:

If you are given 4 links, you
can combine them in 8
different ways

Given one form of assembly
determine the position of the links
when the independent parameter
changes its value from 6,, to 6,,’

A,A+AB = A,B,+B,B

A,A+AB’ = A,B,+B,B’

24
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A B+ A A’ =B A’

Solve the vector equation

B,A’+ A’B’ =B,B’

What about B"??7?

Both
vectors are
known

The magnitudes of
the three vectors
are known

25
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Grashof’s Rule

1.The link may have a full rotation about
the fixed axis (crank)

2. The link may oscillate (swing)
between two limiting angles (rocker).

3 possibilities for a four-bar mechanism:

1) Both of the links connected to the fixed link can have a full rotation. This type of
four-bar is called "double-crank " or "drag-link. *

]) Both of the links connected to the fixed link can only oscillate. This type of four-bar
Is called “double-rocker.”

k) One of the links connected to the fixed link oscillates while the other has a full
rotation. This type of four-bar is called "crank-rocker".

26
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|= length of the longest link
s= length of the shortest link
p,q = length of the two intermediate links

=830, s=216 , p=485, =581

830 + 216 = 1046 < 485+581 = 1066

IFl+s<p+q

a),b) Two different crank-rocker mechanisms are possibie. in each case the
shortest link is the crank, the fixed link is either of the adjacent links.

c) One double-crank (drag-link) is possible when the shortest link is the
frame.

d) One double-rocker mechanism is possible when the link opposite the
shortest link is the frame.

27
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|+s<p+q

Drag-Link Double Rocker

Crank-Rocker

28
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|+s>p+(q

Only double-rocker mechanisms are possible (four different
mechanisms, depending on the fixed link).

=829, s=216 , p=485, q=415

ﬁ\%\ 829 + 216 = 1045 > 485+415 = 900
Grashof’s rule does not depend on how
the links with different size are
connected to each other.
- L\_@;
| RPD |

i

*

R NS
e

29
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| + s = pD+Q Same as | + s <p + g but “Change point” exists.
A position of the mechanism where all the joints
are colinear (lie on a straight line)

i 3
-
ﬂrf‘.’l-' -..'rhl'hr- fl:;\-r- = = :| E rll-
ey '\.,.‘ rrrrrr :'_""-'-—--=EﬁP -
’ ] ; Ry I
f‘ T 1]
3 5 ]
? r'r-'.-r-"‘-,. I..F 'L‘ " 1 .
r %
5 ] &
{.-'* 3 L '“rl.._r = . "‘ i
{ P . e 3
] ) . .
(r— : = | o ‘
% r FF o R
L 4 Ty r
"I'\ -"F .“L ir'l - _|.—|I"
w LML r{
il e T
-- ‘.h r
] .-"-
LS m r
[ Wy
h'h.rl & r -ﬂ" Ty
r 9
i '_|.—|r" i'i- P L
[
'y
"
ﬁé \

30

© ERES ME 201 METU ME



va

Paralelogram Linkage

Deltoid Linkage

31
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Dead-Center Positions of Crank-Rocker Mechanisms

y= swing angle
¢= corresponding crank rotation

B= initial crank angle

Determine v and ¢ using
cosine theorem.

_time it takes for forward stroke ¢

TR=— =—
time it takes for reverse stroke 360" — ¢
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Transmission Angle

Transmission angle is a
kinematic quantity which
gives us an idea on how
well the force is
transmitted

2 2 2 2
a, +a;—a; —a, a,a
cosp=——3—+ 24_12¢0s0,
2a.,a, a,a,
2 2 2 2
a; +a;—a; —a;, = a,a,
COS!"lmin o= T
max 2a.,a, a,a,
33
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Examples:

Slider-Crank Mechanism Inverted Slider-Crank Mechanism

For the full rotatability of
the crank:

Eccentricity < (as-a,) and
az > a,
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Function routines to determine the magnitude
and the angle of a vector (rectangular to polar
conversion)

=8 Function Mag(X, Y)

‘returns the magnitude of the vector
Mag=Sqr(X*2+Y * 2)
End Function

* * Function Ang(X, Y)
‘returns the angle the vector makes wr to +ve x axis
Dim AA, Pi
Pi=4*Atn(1)
If Abs(X) > eps Then
AA = Atn(Y / X)
If X<0 Then
AA = AA + Pi
Else:
If Y <0 Then AA = AA + 2*Pi
End If
Else:
IfY>0Then AA=Pi/2 Else AA=-Pi/2
End If
Ang = AA
End Function

38
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Opposite
Function routines to solve an unknown angle
B C or length of a triangle using cosine theorem
Ul
U 2 Function AngCos(u1, u2, Opposite)
‘returns the angle alfa
Dim U
U= (u1*ul+u2*u2-Opposite * Opposite) / (2 * u1 * u2)
AA = Acos(U)
AngCos = AA
End Function

Function MagCos(u1, u2, Angle)

— ‘returns the length of the side opposite to the side

0 J1-x MagCos = Sqr(u1 *u1 +u2 *u2 -2 * u1 * u2 * Cos(Angle))
End Function

Function Acos(X)
Acos = Atn(-X/ Sqr(-X * X + 1)) + 2 * Atn(1)
End Function

X Function Asin(X)
Asin = Atn(X/ Sqr(-X * X + 1))
0 End Function

39
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Stepwise Solution

Write a set of equations which can be solved in steps to yield a
complete analysis of the mechanism

Or

Derive an algorithm to perform a complete position analysis
Example: Four-bar

BoA=S,+iS, =S<¢

S,= 8,C08(015)-a, (1)
S,=a,sIn(6,,) (2)
5= \/sxz +5 F (3)
¢=atan '(s,,s,) (4)

Y= COS_l[(af1 +8% — a§)/2a4s] (5)

= icos‘l[(a§ +as — 52) / 2a3a4]
01,=0Fy (7) (6)

013=0,—1 (8)

40
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Given:
The link lengths a,, a,, a;, a,,
. the configuration (config)

The input crank angle 6,,

Determine: The position of
the links

1‘. Solve equations 1-8

Config= +1 or -1(cross configuration)

T.._r_rth e T e
. _—Function FourBar(Crank, Coupler, Rocker, Fixed, Config, Theta)

Eﬁ" Dim S, Fi, Si As Double
Dim sx, sy As Double
This function sx= -Fixed + Crank * Cos(Theta)
routine returns the sy = Crank * Sin(Theta)
value of 6, S = Mag(sx, sy)

Fi = Ang(sx, sy)

Si = AngCos(Rocker, S, Coupler)

FourBar = Fi - Config * Si

End Function 41
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i - r: 7
< I = :f " i

3 |

%)\

Function FourBrCoupler(Crank, Coupler, Rocker, Fixed, Config, Theta)
Dim S, Fi, Si, Mu As Double

Dim sx, sy, Theta4 As Double

sx = -Fixed + Crank * Cos(Theta)

This function sy = Crank * Sin(Theta)

routine S = Mag(sx, sy)

returns the Fi = Ang(sx, sy)

value of 0, Si = AngCos(Rocker, S, Coupler)

Thetad4= Fi - Config * Si

Mu = AngCos(Coupler, Rocker, S)

FourBrCoupler = Theta4 - Mu

End Function 42
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This function
routine returns
both values 0,5
and 6.,

Function FourBar2(Crank, Coupler, Rocker, Fixed, Config, Theta)
Dim s, Fi, Si As Double

Dim sx, sy As Double

Dim A(2)

sx = -Fixed + Crank * Cos(Theta)
sy = Crank * Sin(Theta)

s = Mag(sx, sy)

Fi = Ang(sx, sy)

Si = AngCos(Rocker, S, Coupler)
Mu = AngCos(Coupler, Rocker, s)
A(1) = Fi - Config * Si

A(0) =A(1) - Mu

FourBar2 = A

End Function

43
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Example: Slider-Crank Mechanism

[ 4 -

_'.-__-.ee.’__-- L __1-_-
’/,:///:f ///./:a ///.:/

I;:centricity
-

8 X

¢:Sin{azsin O, —ai}
ds

If Config= +1 then 6,;=n—¢
If Config= -1 then 0,,=¢
$,,=a,C080,,-2,C0S O,

44
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Example: Slider-Crank mechanism

R -8
_'.-__-.ee.’__-- 1
’/,:///:,///./:a ///.:/ Eccmmclty
X
%14

Function SliderCrank(Crank, Coupler, Eccentricity, Config, Theta)
Dim Fi As Double

Fi = Asin((Crank * Sin(Theta) - Eccentricity) / Coupler)

If Config =1 Then Fi =4 * Atn(1) - Fi

SliderCrank = Crank * Cos(Theta) - Coupler * Cos(Fi)

End Function

45
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This function
routine returns
both values 0,5
and 6.,

Function with double argument

Function FourBar2(Crank, Coupler, Rocker, Fixed, Config, Theta)

Dim s, Fi, Si As Double

Dim sx, sy As Double

Dim A(2)

sx = -Fixed + Crank * Cos(Theta)
sy = Crank * Sin(Theta)

s = Mag(sx, sy)

Fi = Ang(sx, sy)

Si = AngCos(Rocker, S, Coupler)
Mu = AngCos(Coupler, Rocker, s)
A(1) = Fi - Config * Si

A(0) = A(1) - Mu

FourBar2 = A

End Function

46
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”{:///:; .—"'//.:.- ///.:x Eccmmclty

-
X

-

Function SliderCrank2(Crank, Coupler, Eccentricity, Config, Theta)
Dim Fi As Double

Dim A(2) As Double

Fi = Asin((Crank * Sin(Theta) - Eccentricity) / Coupler)

If Config =1 Then Fi =4 * Atn(1) - Fi

A(0) = Fi

A(1) = Crank * Cos(Theta) - Coupler * Cos(Fi)

SliderCrnk2 = A

End Function

47
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